
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 5: Program Logic
and Indefinite Loops

2Copyright 2006 by Pearson Education

Lecture outline
� fencepost loops

� indefinite loops
� the while loop

� sentinel loops

3Copyright 2006 by Pearson Education

reading: 4.1

Fencepost loopsFencepost loops

4Copyright 2006 by Pearson Education

The fencepost problem
� Problem: Write a static method named printNumbers

that prints each number from 1 to a given maximum,
separated by commas.

For example, the method call:
printNumbers(5)

should print:
1, 2, 3, 4, 5

5Copyright 2006 by Pearson Education

Flawed solutions
� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", ");

}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5):

1, 2, 3, 4, 5,

� public static void printNumbers(int max) {
for (int i = 1; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5):

, 1, 2, 3, 4, 5

6Copyright 2006 by Pearson Education

Fence post analogy
� We print n numbers but need only n - 1 commas.

� This problem is similar to the task of building a fence
with lengths of wire separated by posts.

� often called a fencepost problem

� If we repeatedly place a post and wire,
the last post will have an extra dangling wire.

� A flawed algorithm:

for (length of fence) {

place some post.

place some wire.

}

7Copyright 2006 by Pearson Education

Fencepost loop
� The solution is to add an extra statement outside the

loop that places the initial "post."

� This is sometimes also called a fencepost loop or a
"loop-and-a-half" solution.

� The revised algorithm:

place a post.

for (length of fence - 1) {

place some wire.

place some post.

}

8Copyright 2006 by Pearson Education

Fencepost method solution
� A version of printNumbers that works:

public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);

}
System.out.println(); // to end the line of output

}

Output from printNumbers(5):
1, 2, 3, 4, 5

9Copyright 2006 by Pearson Education

Fencepost question
� Write a method named printPrimes that, when given a

maximum number, prints all prime numbers up to that
maximum in the following format.

� Example: printPrimes(50) prints

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

10Copyright 2006 by Pearson Education

Fencepost answer
public class Primes {

public static void main(String[] args) {
printPrimes(50);
printPrimes(1000);

}

// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {

System.out.print("[2");
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
System.out.print(", " + i);

}
}
System.out.println("]");

}

// see ch04-1 slides for countFactors method
}

11Copyright 2006 by Pearson Education

while loopswhile loops

reading: 5.1

12Copyright 2006 by Pearson Education

Definite loops
� definite loop: One that executes a known number of times.

� The for loops we have seen so far are definite loops.

� We often use language like,

� "Repeat these statements N times."

� "For each of these 10 things,"

� Examples:

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.

13Copyright 2006 by Pearson Education

Indefinite loops
� indefinite loop: One where it is not obvious in advance

how many times it will execute.
� The while loops in this chapter are indefinite loops.

� We often use language like,

� "Keep looping as long as or while this condition is still true."

� "Don't stop looping until the following happens."

� Examples:

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Continue looping while the user has not typed "n" to quit.

14Copyright 2006 by Pearson Education

The while loop statement
� while loop: Executes as long as a condition is true.

� well suited to writing indefinite loops

while (<condition>) {
<statement(s)> ;

}

� Example:
int number = 1;

while (number <= 200) {

System.out.print(number + " ");
number = number * 2;

}

� OUTPUT:

1 2 4 8 16 32 64 128

15Copyright 2006 by Pearson Education

Example while loop
� Finds and prints a number's first factor other than 1:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

� Example log of execution:

Type a number: 91

First factor: 7

16Copyright 2006 by Pearson Education

While loop question
� Write code that repeatedly prompts until the user types

a non-negative number, then computes its square root.

� Example log of execution:

Type a non-negative integer: -5
Invalid number, try again: -1

Invalid number, try again: -235

Invalid number, try again: -87

Invalid number, try again: 121
The square root of 121 is 11.0

17Copyright 2006 by Pearson Education

While loop answer
� Solution:

System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

System.out.println("The square root of " + number +
" is " + Math.sqrt(number));

� Notice that number has to be declared outside the loop.

18Copyright 2006 by Pearson Education

Sentinel loopsSentinel loops

reading: 5.1

19Copyright 2006 by Pearson Education

Sentinel values
� sentinel: Special value that signals the end of user input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: Write a program that repeatedly prompts the user for
numbers to add until the user types 0, then outputs their sum.

(In this case, 0 is our sentinel value.)

� Example log of execution:

Enter a number (0 to quit): 95
Enter a number (0 to quit): 87
Enter a number (0 to quit): 42
Enter a number (0 to quit): 26
Enter a number (0 to quit): 0
The total is 250

20Copyright 2006 by Pearson Education

Flawed sentinel solution
� What's wrong with this solution?

Scanner console = new Scanner(System.in);

int sum = 0;

int number = 1; // "dummy value", anything but 0

while (number != 0) {

System.out.print("Enter a number (0 to quit): ");

number = console.nextInt();

sum = sum + number;

}

System.out.println("The total is " + sum);

21Copyright 2006 by Pearson Education

A different sentinel value
� Modify your program to use a sentinel value of -1.

� Example log of execution:

Enter a number (-1 to quit): 95
Enter a number (-1 to quit): 87

Enter a number (-1 to quit): 42

Enter a number (-1 to quit): 26

Enter a number (-1 to quit): -1
The total is 250

22Copyright 2006 by Pearson Education

Changing the sentinel value
� To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but -1

while (number != -1) {
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();
sum += number;

}

System.out.println("The total is " + sum);

� Now the solution produces the wrong output. Why?
The total was 249

23Copyright 2006 by Pearson Education

The problem with our code
� Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input to the sum.

}

� On the last pass, the sentinel -1 is added to the sum:

prompt for input; read input (-1).

add input (-1) to the sum.

� This is a fencepost problem.

� We want to read N numbers, but only sum the first N-1 of them.

24Copyright 2006 by Pearson Education

A fencepost solution
� We need the code to use a pattern like this:

sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

� Sentinel loops often utilize a fencepost-style "loop-and-
a-half" solution by pulling some code out of the loop.

25Copyright 2006 by Pearson Education

Correct code
� This solution produces the correct output:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
sum = sum + number; // moved to top of loop
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println("The total is " + sum);

26Copyright 2006 by Pearson Education

Constant with sentinel
� A better solution creates a constant for the sentinel:

public static final int SENTINEL = -1;

� This solution uses the constant:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");

int number = console.nextInt();

while (number != SENTINEL) {
sum = sum + number;

System.out.print("Enter a number (" + SENTINEL + " to quit): ");

number = console.nextInt();
}

System.out.println("The total is " + sum);

